Gaussian Process Based Model-free Control with Q-Learning
نویسندگان
چکیده
منابع مشابه
Model Learning with Local Gaussian Process Regression
Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse d...
متن کاملDual Control with Active Learning using Gaussian Process Regression
In many real world problems, control decisions have to be made with limited information. The controller may have no a priori (or even posteriori) data on the nonlinear system, except from a limited number of points that are obtained over time. This is either due to high cost of observation or the highly non-stationary nature of the system. The resulting conflict between information collection (...
متن کاملP14: Anxiety Control Using Q-Learning
Anxiety disorders are the most common reasons for referring to specialized clinics. If the response to stress changed, anxiety can be greatly controlled. The most obvious effect of stress occurs on circulatory system especially through sweating. the electrical conductivity of skin or in other words Galvanic Skin Response (GSR) which is dependent on stress level is used; beside this parameter pe...
متن کاملLearning a Gaussian Process Model with Uncertain Inputs
Learning with uncertain inputs is well-known to be a difficult task. In order to achieve this analytically using a Gaussian Process prior model, we expand the original process around the input mean (Delta method), assuming the random input is normally distributed. We thus derive a new process whose covariance function accounts for the randomness of the input. We illustrate the effectiveness of ...
متن کاملGaussian Process for Internal Model Control
Abstract — To improve transparency and reduce the curse of dimensionality of non–linear black–box models, the local modelling approach was proposed. Poor transient response of Local Model networks led to the use of non–parametrical probabilistic models such as the Gaussian Process prior approach. Recently, Gaussian Process models were applied in the Minimum Variance Control. This paper introduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.09.147